- Agrawal S, Chatterjee K, Novotný P. 2018. Lexicographic ranking supermartingales: an efficient approach to termination of probabilistic programs. Proceedings of the ACM on Programming Languages 2(POPL): 1–32. https://doi.org/10.1145/3158122.
- Arduini M, Noci L, Pirovano F, Zhang C, Shrestha YR, Paudel B. 2020. Adversarial learning for debiasing knowledge graph embeddings. In MLG 2020: 16th International Workshop on Mining and Learning with Graphs—A Workshop at the KDD Conference, August 24, 2020, San Diego, CA: 7.
- Avramov D, Cheng S, Metzker L. 2019. Machine learning versus economic restrictions: evidence from stock return predictability. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3450322.
- Bail CA. 2014. The cultural environment: measuring culture with big data. Theory and Society 43(3/4): 465–482. http://www.jstor.org/stable/43694728.
- Barney J. 1991. Firm resources and sustained competitive advantage. Journal of Management 17(1): 99–120. https://doi.org/10.1177/014920639101700108.
- Barocas S, Selbst AD. 2016. Big data’s disparate impact. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2477899.
- Baum JR, Wally S. 2003. Strategic decision speed and firm performance. Strategic Management Journal 24(11): 1107–1129. https://doi.org/10.1002/smj.343.
- Biessmann F, Lehmann P, Kirsch D, Schelter S. 2016. Predicting political party affiliation from text. PolText, 14–19. https://ssc.io/pdf/poltext.pdf. Brynjolfsson E, Mitchell T. 2017. What can machine learning do? Workforce implications. Science 358(6370): 1530–1534. https://doi.org/10.1126/science.aap8062.
- Castelvecchi D. 2016. Can we open the black box of AI? Nature 538(7623): 20–23. https://doi.org/10.1038/538020a.
- Chalmers D, MacKenzie NG, Carter S. 2020. Artificial intelligence and entrepreneurship: implications for venture creation in the Fourth Industrial Revolution. Entrepreneurship Theory and Practice. https://doi.org/10.1177/1042258720934581.
- Chan JT, Zhong W. 2018. Reading China: predicting policy change with machine learning. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3275687.
- Cheung CF, Wang WM, Lo V, Lee WB. 2004. An agent-oriented and knowledge-based system for strategic e-procurement. Expert Systems 21(1): 11–21.
- Cielen A, Peeters L, Vanhoof K. 2004. Bankruptcy prediction using a data envelopment analysis. European Journal of Operational Research 154(2): 526–532. https://doi.org/https://doi.org/10.1016/S0377-2217(03)00186-3.
- Cockburn I, Henderson R, Stern S. 2018. The impact of artificial intelligence on innovation. NBER Working Paper Series 24449. National Bureau of Economic Research, Cambridge, MA. https://doi.org/10.3386/w24449.
- Coletto M, Lucchese C, Orlando S, Perego R. 2015. Electoral predictions with Twitter: a machine-learning approach. CEUR Workshop Proceedings. http://eprints.imtlucca.it/3489/1/paper_19.pdf [1 August 2020].
- Davenport TH, Ronanki R. 2018. Artificial intelligence for the real world. Harvard Business Review 96(1): 108–116. https://hbr.org/2018/01/artificial-intelligence-for-the-real-world [1 August 2020].
- Dodge J, Gururangan S, Card D, Schwartz R, Smith NA. 2020. Show your work: improved reporting of experimental results. EMNLP-IJCNLP 2019: 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference, 2185–2194.
- Doyle G, Srivastava SB, Goldberg A, Frank MC. 2017. Alignment at work: using language to distinguish the internalization and self-regulation components of cultural fit in organizations. ACL 2017—55th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers) 1: 603–612.
- Ferràs-Hernández X, Tarrats-Pons E, Arimany-Serrat N. 2017. Disruption in the automotive industry: a Cambrian moment. Business Horizons 60(6): 855–863. https://doi.org/10.1016/j.bushor.2017.07.011.
- Fethi MD, Pasiouras F. 2010. Assessing bank efficiency and performance with operational research and artificial intelligence techniques: a survey. European Journal of Operational Research 204(2): 189–198.
- Fleder D, Hosanagar K. 2009. Blockbuster culture’s next rise or fall: the impact of recommender systems on sales diversity. Management Science 55(5): 697–712. http://www.jstor.org/stable/40539182.
- Franz L, Shrestha YR, Paudel B. 2020. A deep learning pipeline for patient diagnosis prediction using electronic health records. In BioKDD 2020: 19th International Workshop on Data Mining in Bioinformatics, August 24, 2020, San Diego, CA.
- Glikson E, Woolley AW. 2020. Human trust in artificial intelligence: review of empirical research. Academy of Management Annals 14(2), 627–660. https://doi.org/10.5465/annals.2018.0057.
- Goldfarb A, Tucker C. 2019. Digital economics. Journal of Economic Literature 57(1): 3–43.
- Gomez-Uribe CA, Hunt N. 2015. The Netflix recommender system: algorithms, business value, and innovation. ACM Transactions on Management Information Systems 6(4): 1–19. https://doi.org/10.1145/2843948.
- Haefliger S, Jäger P, von Krogh G. 2010. Under the radar: industry entry by user entrepreneurs. Research Policy 39(9): 1198–1213. https://ideas.repec.org/a/eee/respol/v39y2010i9p1198-1213.html.
- Haenlein M, Kaplan A. 2019. A brief history of artificial intelligence: on the past, present, and future of artificial intelligence. California Management Review 61(4): 5–14. https://doi.org/10.1177/0008125619864925.
- Haki K, Beese J, Aier S, Winter R. 2020. The evolution of information systems architecture: an agent-based simulation model. Management Information Systems Quarterly 44(1). https://aisel.aisnet.org/misq/vol44/iss1/8.
- Hamel G, Prahalad CK. 1994. Competing for the Future. Harvard Business School Press: Boston, MA. http://www.books24x7.com/marc.asp?bookid=2420.
- Hamet P, Tremblay J. 2017. Artificial intelligence in medicine. Metabolism: Clinical and Experimental 69: S36–S40. https://doi.org/10.1016/j.metabol.2017.01.011.
- Hardt M, Price E, Srebro N. 2016. Equality of opportunity in supervised learning. Advances in Neural Information Processing Systems, 3323–3331. https://arxiv.org/abs/1610.02413v1.
- Harrington JE. 2018. Developing competition law for collusion by autonomous artificial agents. Journal of Competition Law and Economics 14(3): 331–363. https://doi.org/10.1093/joclec/nhy016.
- He VF, Puranam P, Shrestha YR, von Krogh G. 2020 Resolving governance disputes in communities: a study of software license decisions. Strategic Management Journal 41 (10): 1837–1868.
- Heinonen K. 2011. Consumer activity in social media: Managerial approaches to consumers’ social media behavior. Journal of Consumer Behaviour 10(6): 356–364. https://doi.org/10.1002/cb.376.
- Hitt MA, Ireland RD, Hoskisson RE. 2015. Strategic Management: Competitiveness and Globalization--Concepts and Cases. Cengage Learning Asia Pte Ltd.: Boston, MA.
- Hollebeek LD, Conduit J, Brodie RJ. 2016. Strategic drivers, anticipated and unanticipated outcomes of customer engagement. Journal of Marketing Management 32(5–6): 393–398.
- Holstein K, Wortman Vaughan J, Daumé H, Dudik M, Wallach H. 2019. Improving fairness in machine learning systems: what do industry practitioners need? Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–16. https://doi.org/10.1145/3290605.3300830.
- Homburg C, Bucerius M. 2006. Is speed of integration really a success factor of mergers and acquisitions? An analysis of the role of internal and external relatedness. Strategic Management Journal 27(4): 347–367. https://doi.org/10.1002/smj.520
- Huang AC, Jiang T, Liu YX, Bai YC, Reed J, Qu B, Goossens A, Nützmann HW, Bai Y, Osbourn A. 2019. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364(6440). https://doi.org/10.1126/science.aau6389.
- Humphreys P, McIvor R, Huang G. 2002. An expert system for evaluating the make-or-buy decision. Computers and Industrial Engineering 42(2): 567–585. Ireland RD,
- Hitt MA, Sirmon DG. 2003. A model of strategic entrepreneurship: the construct and its dimensions. Journal of Management 29(6): 963–989. https://doi.org/10.1016/s0149-2063_03_00086-2.
- Jarrahi MH. 2018. Artificial intelligence and the future of work: human-AI symbiosis in organizational decision making. Business Horizons 61(4): 577–586. https://doi.org/10.1016/j.bushor.2018.03.007.
- Jarzabkowski P, Balogun J, Seidl D. 2007. Strategizing: the challenges of a practice perspective. Human Relations 60(1): 5–27. https://doi.org/10.1177/0018726707075703. Jean N, Burke M, Xie M, Davis WM, Lobell DB, Ermon S. 2016. Combining satellite imagery and machine learning to predict poverty. Science 353(6301): 790–794. https://doi.org/10.1126/science.aaf7894.
- Keding C. 2020. Understanding the interplay of artificial intelligence and strategic management: four decades of research in review. Management Review Quarterly 71: 91–134. https://doi.org/10.1007/s11301-020-00181-x.
- King WR, He J. 2006. A meta-analysis of the technology acceptance model. Information and Management 43(6): 740–755. https://doi.org/10.1016/j.im.2006.05.003.
- Kleinberg J, Mullainathan S, Raghavan M. 2017. Inherent trade-offs in the fair determination of risk scores. Leibniz International Proceedings in Informatics (LIPIcs), 67. https://doi.org/10.4230/LIPIcs.ITCS.2017.43.
- Kou G, Chao X, Peng Y, Alsaadi FE, Herrera-Viedma E. 2019. Machine learning methods for systemic risk analysis in financial sectors. Technological and Economic Development of Economy 25(5): 716–742. https://doi.org/10.3846/tede.2019.8740.
- Kshirsagar V, Wieczorek J, Ramanathan S, Wells R. 2017. Household poverty classification in data-scarce environments: a machine learning approach. ArXiv: Machine Learning. https://arxiv.org/abs/1711.06813.
- Kucukkeles B, Ben-Menahem SM, von Krogh G. 2019. Small numbers, big concerns: practices and organizational arrangements in rare disease drug repurposing. Academy of Management Discoveries 5(4): 415–437. https://doi.org/10.5465/amd.2018.0183.
- Lawrence T. 1991. Impacts of artificial intelligence on organizational decision making. Journal of Behavioral Decision Making 4(3): 195–214. https://doi.org/10.1002/bdm.3960040306.
- Lee C, Kwon O, Kim M, Kwon D. 2018. Early identification of emerging technologies: a machine learning approach using multiple patent indicators. Technological Forecasting and Social Change 127: 291–303. https://doi.org/10.1016/j.techfore.2017.10.002.
- Liebeskind JP. 1996. Knowledge, strategy, and the theory of the firm. Strategic Management Journal 17(S2): 93–107.
- March JG, Simon HA. 1958. Organizations. Wiley: New York, NY. McCarthy J. 1981. Epistemological problems of artificial intelligence. In Readings in Artificial Intelligence, Webber BL, Nilsson NJ (eds). Elsevier: Burlington, MA; 459–465. https://doi.org/10.1016/b978-0-934613-03-3.50035-0.
- McCorduck P. 2004. Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence. AK Peters / CRC Press: Natick, MA.
- Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A. 2019. A survey on bias and fairness in machine learning. ArXiv, https://arxiv.org/pdf/1908.09635.pdf abs/1908.0.
- Menon A, Choi J, Tabakovic H. 2018. What you say your strategy is and why it matters: natural language processing of unstructured text. Academy of Management Proceedings 2018(1). https://doi.org/10.5465/ambpp.2018.18319abstract.
- Mithas S, Rust R. 2016. How information technology strategy and investments influence firm performance: conjecture and empirical evidence. Management Information Systems Quarterly 40(1). https://aisel.aisnet.org/misq/vol40/iss1/12.
- Nag R, Hambrick DC, Chen MJ. 2007. What is strategic management, really? Inductive derivation of a consensus definition of the field. Strategic Management Journal 28(9): 935–955. https://doi.org/10.1002/smj.615.
- Nissen ME, Sengupta K. 2006. Incorporating software agents into supply chains: experimental investigation with a procurement task. MIS Quarterly: Management Information Systems 30(1): 145–166. https://doi.org/10.2307/25148721.
- Pant G, Sheng ORL. 2015. Web footprints of firms: using online isomorphism for competitor identification. Information Systems Research 26(1): 188–209. https://doi.org/10.1287/isre.2014.0563.
- Powell TC, Dent-Micallef A. 1997. Information technology as competitive advantage: the role of human, business, and technology resources. Strategic Management Journal 18(5): 375–405. https://doi.org/10.1002/(SICI)1097-0266(199705)18:5<375::AID-SMJ876>3.0.CO;2-7.
- Ranaei S, Karvonen M, Suominen, A, Kässi, T. 2016. Patent-based technology forecasting: case of electric and hydrogen vehicle. International Journal of Energy Technology and Policy 12(1): 20–40. https://doi.org/10.1504/IJETP.2016.074490.
- Randall C, Dent EB. 2019. Reconciling the historical divide between strategy process and strategy content. Journal of Management History 25(3): 401–427. https://doi.org/10.1108/JMH-11-2018-0062.
- Reeves M, Levin S, Ueda D. 2016. The biology of corporate survival. BCG Henderson Institute. https://hbr.org/2016/01/the-biology-of-corporate-survival.
- Robinson CV, Ahmad F, Simmons JEL. 2021. Consolidation and fragmentation in environmental scanning: a review and research agenda. Long Range Planning, forthcoming. https://doi.org/10.1016/j.lrp.2020.101997.
- Shrestha YR. 2019. Bridging data science and organization science: leveraging algorithmic induction to research online communities. Doctoral dissertation, ETH Zurich. https://doi.org/10.3929/ethz-b-000332700.
- Shrestha YR, Ben-Menahem SM, von Krogh G. 2019. Organizational decision-making structures in the age of artificial intelligence. California Management Review 61(4): 66–83. https://doi.org/10.1177/0008125619862257.
- Shrestha YR, He VF, Puranam P, von Krogh G. Forthcoming. Algorithmic induction through machine learning: opportunities for management and organization research. Organization Science.
- Shrestha YR, Krishna V, von Krogh, G. 2021 Augmenting organizational decision-making with deep learning algorithms: principles, promises, and challenges. Journal of Business Research 123: 588–603.
- Shrestha YR, Yang Y. 2019. Fairness in algorithmic decision-making: applications in multi-winner voting, machine learning, and recommender systems Algorithms 12 (9): 199–227.
- Simon HA. 1947. Administrative Behavior: A Study of Decision-Making Processes in Administrative Organization. Macmillan: New York, NY.
- Starr P. 2014. Is the past in our future? Contemporary Sociology: A Journal of Reviews 43(6): 795–800. https://doi.org/10.1177/0094306114553214b. Strohmeier S, Piazza F. 2013. Domain driven data mining in human resource management: a review of current research. Expert Systems with Applications 40(7): 2410–2420. https://doi.org/10.1016/j.eswa.2012.10.059.
- Suominen A, Toivanen H, Seppänen M. 2017. Firms’ knowledge profiles: mapping patent data with unsupervised learning. Technological Forecasting and Social Change 115: 131–142. https://doi.org/10.1016/j.techfore.2016.09.028.
- Treleaven P, Batrinca B. 2017. Algorithmic regulation: automating financial compliance monitoring and regulation using AI and blockchain. Journal of Financial Transformation 45: 14–21. https://econpapers.repec.org/RePEc:ris:jofitr:1586.
- von Krogh G. 2018. Artificial intelligence in organizations: new opportunities for phenomenon-based theorizing. Academy of Management Discoveries 4(4): 404–409. https://doi.org/10.5465/amd.2018.0084.
- von Krogh G, Roos J. 1995. Organizational Epistemology. St. Martin’s Press: New York, NY. Whittington, R. 2014. Information systems strategy and strategy-as-practice: a joint agenda. Journal of Strategic Information Systems 23(1): 87–91. https://doi.org/10.1016/j.jsis.2014.01.003.
- Wu C-F, Huang SC, Chang T, Chiou C-C, Hsueh H-P. 2020. The nexus of financial development and economic growth across major Asian economies: evidence from bootstrap ARDL testing and machine learning approach. Journal of Computational and Applied Mathematics 372: 112660. https://doi.org/https://doi.org/10.1016/j.cam.2019.112660.
- Yang H. 2013. Targeted search and the long tail effect. RAND Journal of Economics 44(4): 733–756. https://doi.org/10.1111/1756-2171.12036.
- Yoo S, Digman LA. 1987. Decision support system: a new tool for strategic management. Long Range Planning 20(2): 114–124.
- Yousfi-Monod M, Farzindar A, Lapalme G. 2010. Supervised machine learning for summarizing legal documents. Canadian AI 2010. In Lecture Notes in Artificial Intelligence, vol. 6085, Farzindar A, Keselj V (eds). Springer-Verlag: Berlin, Germany; 51–62. https://doi.org/10.1007/978-3-642-13059-5_8.
- Zafarani R, Abbasi MA, Liu H. 2014. Social Media Mining: An Introduction. Cambridge University Press, Cambridge, U.K. https://doi.org/10.1017/CBO9781139088510. Zhang S, Ke X, Frank Wang XH, Liu J. 2018. Empowering leadership and employee creativity: a dual-mechanism perspective. Journal of Occupational and Organizational Psychology 91(4): 896–917. https://doi.org/10.1111/joop.12219.